机械人与人工智能合体:实现想象中的机械人_机械人_技巧
撰文 | 赵珊、林泽玲
最近几年,随着人工智能、物联网、无人驾驶、智能交通等新技能的兴起,机器人也逐渐开始以各种形式进入人们的日常生活,各种家用机器人、做事机器人层出不穷。家用扫地机器人由于价格适中而最先走进千家万户。家用扫地机器人具有一定的智能,可以自动在房间内完成吸尘、拖地等清理事情。2022年冬奥会上媒体餐厅由机器人完成的全智能炒菜送菜做事就大出了一次风头。情绪机器人是近年涌现的新类型,以算法技能授予机器人以“人类的情绪”,使之具有表达、识别和理解喜乐哀怒,模拟、延伸和扩展人的情绪的能力,可以陪伴儿童和老人。著名的比如索尼公司的Aibo机器狗,还有软银集团的Pepper机器人。
当代机器人是一个由各种高科技子系统集成的繁芜系统,一样平常包含处理器(Processor)、传感器(Sensor)、掌握器(Controller)、实行器(Actuator),以及一样平常装在机器臂(Arm)末端的各种功能套件(Effector)等几个部分。机器人系统繁芜,具有跨学科的技能特性,紧张包括软件和硬件两大部分,基本席卷机器、电子、掌握、制造加工等技能工程大类。最近机器人技能又延伸到了人工智能领域,变得能更自然地和人类互换,移动更灵巧,功能越来越多样化,乃至与生物科技、神经科学等新领域相结合。
在过去的10年里,机器人领域有5项技能入选《麻省理工科技评论》“环球十大打破性技能”。
Rethink Robotics研发的Baxter蓝领机器人(the Blue-Collar Robot),学术上也称为协作机器人,具有安全廉价、极易编程和互动的特点,可以在制造业流水线上和人协同完成任务,是人类的好帮手。它的涌现也意味着传统工业机器人技能发展的多个瓶颈被冲破。
为担保事情职员安全,早期的协作机器人没有内在的动力来源,一样平常的动力是由人类事情者供应的。其功能因此与事情职员互助的办法,通过重定向或转向有效载荷来许可打算机掌握运动。进化后的协作机器人则供应了有限的动力,而且添加了多个传感器来监控机器人和互助职员的状态,以担保职员的安全。虽然现阶段离实现具有精良的通用性、人机友好、价格适中等目标还有非常多的寻衅,但是协作机器人力争将人与机器人早期的做事关系变为伙伴关系,开启了机器人研究新的一页。这些研究也从一开始纯挚的运用功能叠加,逐渐蜕变到追求事情关系和构造的改变。人和机器人的团队互助,比较人或者机器人单独事情,能大幅提高事情效率。
机器人可以相对较快地在不平坦和不熟习的地面上行走。图片拍摄者韦布·查普尔(Webb Chappell)
以Baxter为例,协作机器人技能的标志是柔性机器臂,具有摄像头、声呐、力反馈、碰撞检测等多种传感器,使人和机器人互动变得更安全。通过操作职员“手把手”的示范传授教化,降落了任务编程的门槛,使机器人可以更快、更随意马虎地适应新任务,非常适宜中小企业小批量生产和不断缩短的产品生产周期。它们的体积也较小,常日可以放在事情台阁下,帮助从业职员完成高度重复性的事情,如采摘、放置、包装、胶合、焊接等。末了,和传统工业机器人比较,协作机器人的价格也更低廉。
协作机器人代表了机器人技能的最新发展趋势,代表了人和机器人之间关系的进化,由工具变成真正的助手。协作机器人市场最近几年也被极度看好。据国际机器人联合会(IFR)的数据显示,2016年环球工业机器人销量为29.4万台,环球工业机器人保有量为182.8万台。伯克莱成本预测,环球协作机器人市场将从2015的1.16亿美元增长到2025年的115亿美元,紧张会被运用在物品挑拣、包装、流水线上的零部件组装、材料整备、操作其他机器等,估量会在中小规模的制造业、医药、电子零部件等领域大规模运用。
协作机器人的市场正处于高速爆发期,10年内市场规模会远远超过上面的估计。这是由于协作机器人不只可以用在工业领域,更大的增长动力还来自非工业领域,或者说商业领域,纵然具备实用代价的消费级机器臂短期内还不太现实。在不久的将来,非工业领域的销量就会得到巨大增长。
物流仓储和医疗是目前研究和产品化比较多的两个领域。在仓储物流领域中的拣货环节,目前紧张有两种方案。一个是“货到人”,以亚马逊的Kiva机器人、英国Ocado的智能仓库技能为代表;另一个是利用移动机器人加上机器臂来代替工人完成固定货架的分拣,这也是亚马逊的机器人分拣寻衅大赛(Amazon Picking Challenge)的紧张内容,已经有团队利用了FANUC的LRMate200系列轻型机器人搭配3D视觉系统来做货架分拣。电商和智能物流仓储都是非常有潜力的市场。再一个是医疗康复机器人、义肢机器人,由于协作机器人比较安全,加上机器臂可以模拟人类手臂的灵巧特性,它非常适宜用在这些场合。此外,诸如机器人做菜、做导游、做餐饮做事员等,都是很有潜力的运用方向,为我们供应了更多让机器人走入普通人生活的可能性。
但协作机器人技能发展的过程中也碰着了问题——不同硬件须要独立编程,研发耗时耗力导致造价偏高。工业机器人紧张被运用于制造和生产,在流水线上各司其职,在特定工位可以准确完成任务。依照这种模式的机器人研发,必须为不同机器人开拓独立的硬件,搭配相对的掌握软件以给出详细和精确的指令,才能完成特定的任务。举个例子,一个末端具有多枢纽关头的多自由度的仿人手机器人拿起一个杯子,和一个末端只有两根“手指”的钳子机器臂拿起同一个杯子的详细的实现办法,肯定是非常不同的。
如果能让不同的机器人共享各自学到的技能,可以极大地减少重复的开拓事情,快速推动机器人的运用进程。机器人之间知识分享的新技能便是为理解决这个问题而取得的重大技能打破之一,其能使不同的技巧或技能更快地在机器人之间遍及。
自从机器人间技能共享的技能提出以来,这个技能就一贯是机器人技能的热点,产生了很多延伸技能,和人工智能等领域也有很多新的领悟发展。2016年,谢尔盖·莱文(Sergey Levine)被《麻省理工科技评论》评为“35岁以下科技创新35人”之一,他辞客岁夜学教职后加入谷歌连续研究,并在同年揭橥论文“通过大规模数据网络和深度学习,节制机器人的手眼折衷技能”(Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection)。
谢尔盖·莱文创造,通过在很长一段韶光内利用6个机器手各自练习抓取不同的物品,并共享抓取过程中掌握手眼折衷的神经网络的各个参数,最大限度地增大演习数据库的规模,提升了演习和调试神经网络的效率。这项延伸技能的亮点是深度学习的人工智能和机器人硬件掌握的结合,这会是未来一段韶光内机器人技能领域非常有潜力的热点技能。
2017年5月,麻省理工学院打算机科学和人工智能实验室的朱莉·沙阿(Julie Shah)教授发布了CLEARN技能。这个新技能结合了传统的机器人示范传授教化和运动方案编程技能,通过给机器人供应如何抓取一系列范例物体的根本数据信息,然后只通过一次示范传授教化,就能让机器人自动学习到抓取一系列不同物品的技能。更主要的是,这些技能还能自动转化为其他机器人的技能,其他机器人并不哀求和原来的机器人有着同样的移动办法和机器构造。
要利用CLEARN技能,用户首先要向机器人供应有关如何抓取具有不同约束条件的各种物体的信息知识库。例如,轮胎和方向盘具有相似的形状,但要将它们连接到汽车上,机器人必须以不同的办法配置它的机器臂和末端的工具套件才可以更好地移动它们。然后,操作员利用3D接口向机器人进行完成特界说务的演示,该演示包含一系列被称为“关键帧”的干系时候。通过将这些关键帧与知识库中的不同情形进行匹配,机器人可以自动供应运动路线操持,以供操作职员视需求进行编辑。通过这个技能,Optimus双机器臂军用拆弹机器人成功将学到的技能,包括开门、移动物品等,教会给另一个6英尺(约合1.8m)高、400磅(约合181.4kg)重的人形机器人Atlas。
CLEARN技能有效地办理了传统机器人示范传授教化效率较低、耗时长,须要独立开拓编程的问题,使人能更方便快捷地教会机器人新的技能。可以想象,当这类能让机器人更快速地学到新技能的技能被运用于上文提到的协作机器人时,机器人的功能必将快速增加,迅速适应更多的任务,被运用到更多的领域。
在液压动力和多个传感器的加持下,波士顿动力公司的大狗(Bigdog)机器人可以在困难的地面上保持稳定,图片来源于波士顿动力。
现在市情上占主要地位的协作机器人都没有人的形状,更像机器臂,紧张目的是减轻人事情的包袱,在严苛的环境条件下能进行重复事情。以人类自身为原型参照的仿人全身机器人是机器人研究中的尖端领域,也是机器人技能及人工智能的重大目标。可以用脚行走的聪敏机器人(Agile Robots)代表了机器人移动技能的重大打破,使得机器人终于摆脱了地形环境的限定,可以去到人能去到的地方。
这一技能的领导者是波士顿动力(Boston Dynamics)。波士顿动力研发出的双足和四足机器人具有出色的平衡性和机动性,可以在波折不平的繁芜地面行走,可以去到天下上大部分轮式机器人去不了地方。要实现行走这一目标,机器人的每一步都须要动态平衡,须要对瞬间的不稳定性有极强的适应能力。这包括须要快速调度脚的着地点,打算出溘然转向须要施加多大的力,更主要的是还要在极短的韶光内向足部履行非常大而又精准的力,掌握好机器人的整体姿态,在掌握理论、系统集成和工程实现等多个维度都须要极高的“黑科技”。
波士顿动力公司的大狗机器人在行走,图片来源于波士顿动力。
波士顿动力研究的最新版本Atlas,可以用于户外和建筑物内部,是专门为移动运用设计的。它采取电源供电和液压驱动,利用身体和腿部的传感器来平衡头部的激光雷达和立体声传感器,以避免障碍物,评估地形,帮助导航和操作物体。在2021年波士顿动力发布的最新视频里,Atlas比过去更加小巧灵巧,身高1.75m,体重减到82kg。Atlas展示了惊人的“跑酷”能力,可以在狭窄的平衡木上快跑,在障碍物上跳跃,并且还能从高处翻跟斗。能有这些出色的表现得益于波士顿动力天下领先的掌握理论、系统设计和工程能力。Atlas和其他公司的机器人一个主要的差异在于利用了液压系统进行动作掌握,这样可以担保瞬时更大的掌握动力输出和更精确的力通报。Atlas机器人还得益于“仿生”的整体集成构造(Integrated Structure)设计观点。仿活气器人,就像真人一样,不仅有像骨骼和枢纽关头一样的支撑构造和油缸,也有像血管和神经一样的油路和电路。
最引人瞩目的是,除了机动性,Atlas比在2016年最初发布时,更像一个“人”了。在过去的演示中,它基本上是盲目的—须要环境固定,它才能做出成功的动作。但现在的视频里,它确实更多地依赖自己的感知来导航,根据它所看到的情景调度自己的动作。这意味着它比以前更少依赖预先设置的编程,而工程师不必为机器人可能碰着的所有情形都预先编程跳跃动作。
以前机器人遍及的另一问题在于其灵巧性很低。虽然机器人在受控环境中表现出色,但在不受掌握的环境中就弗成了。例如,机器人能轻松地在工厂和仓库中实行人类无法轻易做到的操作,比如准确切割器材到毫分级尺寸,但不能在没有受过大量演习之前像人类那样大略地打开一扇门。但正如Atlas所展示的一样,机器人灵巧性在人工智能的赞助下取得巨大进步。机器人科学家用来提高机器人灵巧性的关键技能之一正是强化学习。强化学习让机器人随着韶光的推移学习利用不同的技能处理物体并选择最好的技能。然后,机器人可用于在任何条件下实行所有可能的任务,并提高其灵巧性。
提高机器人技能的灵巧性后,机器人的用场将更为广泛,在与军事、废物处理、物流和交付、运输等干系的任务中都发挥主要的浸染。相信用不了多久,科幻电影中的机器人将从大银幕走向现实生活。
学术点评
智能机器人,重构未来生产力
撰文丨许华哲(清华大学交叉信息研究院助理教授)
无论是一个人形机器人拿着托盘把一杯咖啡礼貌地递给你,又或者是一个钢铁巨兽眼里闪着光芒企图毁灭人类,对付机器人,人类总是有着无穷的想象。“机器人”是一个古老而又新颖的词语:早在1921年,捷克剧作家便把剧本里流水线上的机器人类叫作“机器人”(Robot);早在1941年,“机器人学”(Robotics)这个词就在科幻作家阿西莫夫揭橥的小说《环舞》(Runaround)中被首次提及。从科幻走向科学,机器人学走过了漫长的发展进程。如今,科学家逐渐让这些“铁家伙”用“手臂”操作物体、像狗一样“跑步”,乃至像人一样“双足行走”。在2022年这个人工智能逐渐成熟的韶光段,机器人学研究和干系家当也开始抖擞新的活气。
人工智能,尤其是个中的深度学习技能,对很多人来说已经不是什么新鲜事:手机里的人脸支付、自拍里的滤镜、网络广告的推举系统都依赖深度学习,即从数据中学习模式,乃至天生数据。从人工智能科学家的研究视角来看,如今已经有了摄像头作为“眼睛”,语音处理技能作为“嘴巴”,那么下一步很自然地便是如何把智能的“手”和“脚”装上去。对付机器人学的研究者来说,如何给那些已经能完成跑跳掌握的电子机器装置装上“大脑”,也成为最近的事情热点。
因此,人工智能和机器人的领悟成为一定的趋势:人工智能机器人不仅可以像传统机器人一样完成指定的动作,同时结合了感知和环境中的变革,通过模型进行泛化,从而达到通用目的。这样的“强强联合”,孕育着最富有未来感的想象空间:机器人在非构造化的空间—人类真实生活的空间,可以只依赖传感器信息,完成一系列繁芜的任务。例如你能想象在过春节的时候,一桌子年夜大饭全是由一个机器人为你制作的吗?
当然,现在的人工智能机器人离我们想象中的那些有着相称聪慧水平的硅基生物仍旧有不小的间隔。纵使如此,人类对更智能、更强大的机器人的追求从来没有停下来。2019年,“机动机器人”(Robot Dexterity)入选《麻省理工科技评论》“环球十大打破性技能”,干系论文中提及当年轰动一时的机器人研究——“机器人机动手Dactyl”项目。OpenAI公司的研究员们利用深度强化学习,让机器手在大量随机化的仿照器仿真数据中自主学习拧魔方的策略,并将该策略运用在真实的机器机动手上。该项目之以是影响力大,一是由于“强化学习”让机器人在没有明确人类指令的情形放学会了如何完成任务,这是更高等智能的一个指标;二是由于实现了从仿真环境到真实机器手的迁移,让我们看到了从完善仿真、改进算法,到现实支配这样一个清晰可行的路径。
不足为奇,来自苏黎世联邦理工学院和英特尔公司的机器人专家们,以类似的办法,让机器狗通过深度强化学习在仿真环境里进行了大量的演习。演习所获取的策略,终极用在了ANYmal机器狗上,从而使机器狗可以在多样、繁芜,乃至从未碰着过的地面上行走。而此前,这一问题每每须要机器人科学家和工程师们针对不同地形进行大量人工的优化和整合。能够得到这次全球瞩目的结果,紧张缘故原由是在仿真环境中人工智能机器人早已见过多种多样更繁芜、更波折的路面,以是运用到现实时便可以得心应手。
机器人与人工智能的结合,当然远远不止上述两例。谷歌的科学家让机器人(TossingBot)通过高速移动手臂完成物体的抛掷;加州大学圣地亚哥分校的研究者考试测验让机器人(DexMV)可以从视频中学习人手的动作;斯坦福大学和麻省理工学院的研究者(即笔者所在的团队)试图让机器人(RoboCraft)可以操作柔性物体,乃至包饺子。如今的人工智能算法帮助机器人完成了一个又一个之前只有人类才能完成的多步骤、非规则的任务,机器人再也不单单是流水线上只会做单一指定动作的机器臂了,这不仅模糊了人工智能和机器人的边界,同时进一步解放了生产力,将人类从高危、重复的劳动中解脱出来。
当然,为了创造出有足够智能的机器人,目前仍旧存在着十足的寻衅。在算法层面,以深度学习为根本的一系列技能,都须要依赖神经网络的拟合能力,而稍有神经网络履历的研究者和创造者都曾经历过神经网络的“不靠谱”:神经网络极难达到100%的精确度。在智能解锁等运用处景中,如果神经网络“犯错”,可能只是造成了用户无法解锁手机,须要多次考试测验的情形,但在机器人运用中,却极有可能威胁到人们的生命财产安全。与此同时,如何让机器人应对没见过的极度个例也是非常困难的,由于如果机器人在演习数据集或仿照器里没有经历过此类场景,在真实的天下里每每就会做出错误的判断。在硬件层面,高精度、大载荷的机器人每每是昂贵的、薄弱的,如何有效降落机器人硬件本钱并使其走入千家万户,也是广大机器人研究者和创业者面临的主要课题。
其余,伴随着人工智能机器人的发展,机器人伦理学也逐步进入人们的视野。早在阿西莫夫的科幻小说中就提出了“机器人三定律”:“第一,机器人不得侵害人类,或者不得置人类于危难中;第二,机器人必须服从人类命令,除非与第一定律抵牾;第三,机器人可以在不与第一、第二定律冲突的情形下掩护自身存在。”我们可以感知到,人们对付机器人总是有着各种各样的担心。虽然现在离机器人的“觉醒”时候尚远,但人们仍旧该当思考许多伦理问题。例如,当机器人和人类对话时,是否会由于一些固有印象而利用缺点的人称代词?大量的机器人是否会抢占一部分人类的事情岗位?每一次技能的爆发,都会伴随着相应的社会问题、伦理问题,这也是我们在技能与人类生活领悟的道路上必须要思考和解决的。
我们可以得到什么样的技能?我们可以创造出若何的机器人?拥有了这些机器人后人类的生活有若何的变革?人类正在靠着自己的好奇心探索着未知的疆界,并一步一步地追寻着想象中的未来。在中国,我们已经见到家里的扫地机器人、餐馆里的做事机器人、各处着花的自动驾驶(也可以看作交通轮式机器人)、工厂里的通用机器臂,在可以预期的未来里,这些机器人将会配备上更聪明的“大脑”、更得当的“身体”,完成更困难的任务。在人类的研究和合理约束下,机器人将会让人们的生活更加轻松惬意!
本文经授权摘自《科技之巅:环球打破性技能创新与未来趋势》(公民邮电出版社,2023年1月)
特 别 提 示
1. 进入『返朴』微信公众年夜众号底部菜单“佳构专栏“,可查阅不同主题系列科普文章。
2. 『返朴』供应按月检索文章功能。关注公众号,回答四位数组成的年份+月份,如“1903”,可获取2019年3月的文章索引,以此类推。
版权解释:欢迎个人转发,任何形式的媒体或机构未经授权,不得转载和摘编。转载授权请在「返朴」微信"大众年夜众号内联系后台。
本文系作者个人观点,不代表本站立场,转载请注明出处!