一、人工智能快速发展会挤占环球发展资源吗?

人工智能与能源约束的抵牾能否化解_人工智能_全球 AI快讯

以OpenAI推出ChatGPT为标志,人工智能进入快速发展的轨道。
当前,天生式人工智能正实现着从文本天下、多媒体天下再到物理天下的技能三级跳。
在逐步理解和处理文本、图像、声音、***等多模态信息之后,人工智能还通过物联网和具身机器人连接物理设备,感知真实环境参数,实现智能决策和自主处理繁芜指令。
随着技能更新迭代,人工智能的运用处景也在不断拓宽。
比如,人工智能有望冲破生物医药的“双十困境”(即一款新药研发至少须要投入10亿美元和耗费10年研发周期)。
再如,人工智能技能提高了创造和合成新无机化合物的速率和精确性,加快了新材料的问世。

人工智能并非天使,其快速发展也引发人们对其潜在负面影响的谈论。
比如,机器换人带来失落业和不平等加剧,技能垄断造成消费者福利和社会利益危害,没有与人类代价不雅观“对齐”带来犯罪和胆怯主义风险等。
技能中性论认为,技能本身无所谓善恶,技能所产生的影响取决于技能利用者。
有鉴于此,一些科技界和企业界的个人或机构发布公开信,呼吁加强人工智能管理以避免涌现对人类发展不可逆的风险。
上述谈论已引发诸多研究,而本文的着眼点在于人工智能对发展要素尤其是电力能源的占用。

人工智能技能在台前展示的是比特天下的算力、算法、数据,但其“轻盈的灵魂”背后则是地皮、能源、水等物理天下“沉重的肉身”。

算力的尽头是电力。
据国际能源署数据,2022年美国共有约2700个数据中央,电力花费占全国总量的4%旁边,到2026年这一比例将达到6%。
芯片设计公司Arm的首席实行官Rene Haas则表示,如果不提高芯片的效率,到2030年数据中央的耗电量可能高达美国电力需求的20%到25%。

此外,人工智能的快速发展还须要大量的水、地皮、劳动力和资金要素的支持。
比如,人工智能的耗水紧张表示为冷却、发电用水、生产芯片用水等。

由于环球发展资源有限,当一项新技能打破带来新家当热潮时,虽然其在长期可能有利于人类福祉,但在初期会挤占其他领域的发展资源。
当前,跨国公司成为环球要素和资源配置的主要主体,只管科技向善在国际科技企业的社会任务报告中有所表示,但成本的配置导向并不全然是人类福利的最大化。
由于目前人工智能家当的高利润,成本的力量推动各种资源向人工智能领域集聚形成热潮和泡沫,有可能影响对人类更有当期代价的其他家当的发展。

作为一项能加速人类发展进程的潜在通用目的技能,人工智能的发展在长期具有正外部性。
但在近中期,人工智能发展的收益并不会均匀地分配给环球各国和各收入群体,受益者紧张是互联网企业和风险投资者,而隐性本钱的承担者紧张是发展中国家和低收入群体。
在环球发展仍旧面临粮食安全、能源安全和水资源安全等问题时,这种负外部性尤为明显:根据联合国干系数据,当前全天下有24亿人无法持续得到食品,有6.75亿人无法用上电,23亿人无法得到清洁烹饪燃料和技能,四分之一人口面临“极高”的水资源短缺压力。

二、人工智能发展须要可持续的巨量能源支撑

提升能量密度的努力贯穿人类发展史。
煤炭的广泛利用推动了蒸汽机和铁路的发展,极大地提高生产效率和运输能力,是工业化的加速器。
石油为内燃机供应动力,推动汽车、飞机等交通工具的遍及,加快了城市化和环球化进程。
电网的涌现让高密度能量超过地理限定,促进生产在更广阔地域分布和集聚,是家当分工、家当内分工、家当链分工拾级而上的根本。
每一次家当变革背后都有能源革命的驱动力量,并伴随着生产组织模式变革和社会系统编制变革。

人工智能发展产生大规模电力需求。
据SemiAnalysis数据,2023年一季度以来,环球人工智能打算能力一贯以50%-60%的季度环比增速快速提升。
人工智能对电力的需求紧张来自于数据中央。
据国际能源署(IEA)数据,2023年环球数据中央花费约460太瓦时的电量,相称于德国(484太瓦时)整年的全社会用电量。
数据中央电力需求的紧张来源是做事器、存储设备、通信设备等IT设备,以及照明、空调、冷却系统等配套举动步伐。
数据中央标准组织Uptime Institute的研究表明,2022年环球大型数据中央的均匀能效比(PUE)约为1.55,即数据中央的IT设备每花费1度电,其配套举动步伐花费0.55度电。

天生式人工智能的能耗分为演习和推理两个环节。
每一轮演习任务持续数周至数月,而且比较普通数据处理具有更高的能耗强度。
传统做事器的范例功耗约为1千瓦,但每台人工智能做事器的功耗现在已达数十千瓦。
当前,人工智能还远未达到规模法则(Scaling Law)的顶峰,增加模型参数和演习数据量仍旧是提升人工智能模型性能的紧张路径。
参数数量、数据规模和打算资源几何级数的上升,须要配之以更大规模的电力。
斯坦福大学的一项研究显示,完成GPT-3演习的耗电量为128.7万度,而完成GPT-4演习的能耗是GPT-3的40倍以上,须要5177万至6232万度电。

未来人工智能推理阶段的用电总量比演习阶段高得多。
不同于演习阶段,推理任务的需求和算力在地理分布上相对分散,单位韶光的能耗强度低于演习阶段。
但随着运用处景的快速扩展,未来推理阶段的用电量将大幅攀升。
目前,人工智能的输入输出还紧张是互联网的数字天下。
当人工智能的触角借助各种传感器进入物理天下后,所须要处理的数据量将涌现跃升。
根据市场调研机构Omdia估计,到2023年底,环球物联网设备安装量靠近380亿台,每天产生约10亿GB的数据,这一规模可能还达不到环球物理设备的百万分之一。
每一个生物体也是一个小宇宙,随着可穿着设备和与之干系的智能康健行业的发展,未来对生物信息的数据处理规模将提高到更高的量级,同时也意味着对电力需求的几何级数增长。

从动态来看,芯片技能创新和算法优化将不断提高人工智能在演习和推理时的用能效率,但这也将拓宽人工智能的运用处景并提升模型繁芜度,推动算力需求的更快增长,不断增加总体用电压力。
这一预判符合历史上屡屡涌现的“杰文斯悖论”,即资源利用效率提高将刺激需求增长,终极提高总花费量。

主权AI模式带来的重复演习和运用将进一步增加环球能耗。
基于安全和效率的平衡,环球人工智能培植会保持一定的冗余。
在联合国发布的《以人为本的人工智能管理》报告中,鼓励各国构建本土人工智能生态系统温柔该当地需求的模型,促进人工智能初创企业在更多国家和地区进行测试和支配,以确保利益干系方和各国之间的资源平等获取和隐私数据保护。
因此,各地区相应的根本举动步伐培植、人工智能模型演习与推理会带来环球能源需求的额外增长。

为获取数量级意义上的预测结果,本文采取三种方法,对人工智能电力需求增长进行情境仿照。

1、基于芯片现实供给能力的仿照。
AI芯片是人工智能家当的核心硬件,也是能源花费主体,依据GPU产量和功耗可大致估算人工智能家当的电力需求。
我们假设英伟达H100将成为未来一段韶光内GPU的主流产品,以其功耗作为均匀数。
根据美国银行数据打算,2023年环球人工智能数据中央用电量约为43.8太瓦时。
根据英国金融时报宣布,2024年H100出货量估量达到150-200万块,其峰值功耗为700瓦。
按英伟达95%的GPU市场份额,估算2024年智能芯片出货量约为158-210万块。
根据TrendForce的预测,到2030年GPU产量年均增速26.1%,同时考虑冷却用电约为做事器功耗的50%,可得2030年环球人工智能用电量将达到195-245太瓦时。

2、基于信息家当人工智能化的仿照。
信息通信业是人工智能渗透速率最快、运用范围最广的家当。
Erol Gelenbe(2023)估算出环球ICT行业用电量占总用电量4.3%。
根据国际能源署数据,2023年环球总用电量约为2.8万太瓦时,假设年增长率为3.4%,到2030年环球用电量将达到3.5万太瓦时。
由此估算2030年环球信息行业用电量约为1505太瓦时。
根据Alex de Vries(2023)和SemiAnalysis的评估,一个标准的谷歌搜索利用0.3瓦时的电力,而ChatGPT相应一个标准要求的耗电约为2.9瓦时。
由此可认为,人工智能化的信息做事用电量是普通信息做事的9.67倍。
由此可知,2030年信息家当智能化后的用电量为1.46万太瓦时,占2023年环球用电量的42%。

3、基于人类生产生活活动人工智能化的仿照。
作为一项潜在的通用目的技能,人工智能会影响到各领域的运行办法,从而提高各领域生产、流利和消费行为的用电量。
埃森哲(2023)基于美国就业水平,估计各行业可被人工智能化的占比均值为31%。
如果这部分可被人工智能替代的生产、流利和消费行为实现人工智能化,纵然人类的生产生活规模勾留在2023年的水平,未来人类全部活动的用电量也将达8.3万太瓦时,约为2023年环球用电量的3倍,远远超出环球电力供应的增长能力。

图1 未来环球人工智能用电量预测 数据来源:IEA、美国银行、埃森哲、Vries等研究与笔者打算

须要指出的是,以上三类预测方法基于人工智能和能源技能不变的假定,并不追求详细数据的准确性。
特殊是后两种预测方法,更多是为了呈现人工智能的电力需求跃升后可能达到的量级。
事实上,如果能源技能进步跟不上人工智能的发展,第二种预测情境要以挤占人类其他领域发展资源为代价,而第三种预测情境根本就不可能发生。

三、能源转型速率决定人工智能发展进程

传统化石能源储量无法支撑人工智能的后续发展。
由于对自然资源矿产储量上限的评估不同,已有研究对地球上传统化石能源的可持续利用韶光有较大的不合,大致在50-150年之间。
不过,已有的这些研究尚未将人工智能的普遍运用作为未来的剖析情境。
如前一部分第三种仿照情境,当人工智能充分渗透到各领域之后,所需电力仍将远超出目前人类所有活动总用电量,这将极大透支地球上的可用化石能源储量。
因此,仅依赖传统能源,人工智能可以成为社交媒体分享的流量,但无法成为改变天下发展的通用目的技能。

传统能源驱动的人工智能也不具排放意义上的可行性。
从环球电力供给端看,碳排放强度较高的化石能源占比仍超过60%。
在David Patterson等2021年揭橥的论文《碳排放和大型神经网络演习》中,根据人工智能数据中央所在地区电网的碳强度,估算出GPT-3演习产生588.9吨二氧化碳当量,相称于128辆乘用车年排放量,尚处于可接管范围。
但后续更大模型将使得碳排放量指数级上升。
GPT-4的模型参数约为1.8兆,并在13兆令牌(Tokens)上进行演习。
而GPT-3的模型参数只有0.175兆,模型令牌规模在0.78-5兆之间。
即将面世的GPT-5的参数规模或将达到数百兆,这意味着,如果数据中央供电构造不变,正在研发的GPT-5演习的碳排放可能接十万量级的燃油车排放规模。

采取清洁能源为人工智能发展并非坦途。
风电、光电等新能源具有间歇性、颠簸性和时令性,而人工智能则须要连续、稳定的电力供给。
在现有技能条件下,两者之间的抵牾尚未有高性价比的能源办理方案可以调和。
一些人工智能企业操持采取清洁能源自供电的办法,但目前还未能超过储能技能成熟度和高本钱的障碍,而试图采取核能技能的方案也不随意马虎通过各国监管部门的审批。
更为现实的方案,仍是依赖全国性或区域性电网为人工智能家当供应稳定电力。

环球电网吸纳新能源的扩容速率没有跟上人工智能发展步伐。
在接入风光电等新能源过程中,电网局部承载能力、通道运送能力和系统调节能力均面临寻衅,必须对输配电网进行大规模扩建和升级。
根据IEA《电网与保障能源转型》报告,虽然可再生能源的年投资规模自2010年以来险些翻了一番,但近十年来环球电网年投资额却仍保持在十年前的3000亿美元水平。
2022年,环球至少有30亿千瓦的可再生能源发电项目正在排队等待并网,相称于当年光伏和风力发电新增装机容量的五倍。
除了技能层面的缘故原由,环球电网扩容还面临电力设备供应链紧张和资金投入增长缓慢等问题。

传统家当电气化的刚性需求与人工智能电力需求将产生竞争。
2023年环球电力在终极能源消费中的份额仅是20%旁边,传统家当电气化是环球减排的主要路径。
为实现低碳转型目标,工业部门勾引高碳排放行业履行电气扮装备技能改造,交通部门推广电动化、燃料电池和新型电力基建,建筑部门利用电气设备办理日常用能需求。
随着环球各家当部门电气化提速,估量到2030年电力在终极能源消费中的份额将靠近30%。
但过去十年环球发电量的年均增速坚持在1.0-4.1%之间,很难同时支持传统家当电气化和人工智能电力需求的快速增长。

在用能竞争导致电价上涨的情形下,人工智能家当还会对一些国家的能源密集型家当和居民生活产生负面影响。
2021-2022年间批发电价上涨之后,欧洲工业面临更高的能源本钱,金属冶炼和化工等能源密集型家当的竞争力低落,涌现了外迁的趋势。
如果未来人工智能发展导致电力供需再度紧张,在电价上升的情形下,人工智能企业能以价高者得的上风担保业务运行,其他电价敏感行业的竞争力将受到削弱,居民用电本钱也面临上升压力。

四、两条赛道:人工智能和能源转型的创新竞合

在技能条件不变的假设下,人工智能短期内确实会挤占环球发展其他领域的能源需求。
但通过技能创新解除既有条件束缚,一贯是人类文明向前发展的紧张路径。
人工智能和能源约束之间的抵牾能否化解,取决于两场“竞赛”的结果。
一方面,人工智能算力能效的提升速率能否超越运用处景的扩散速率,是破解前文所述“杰文斯悖论”的关键。
另一条赛道则是能源转型的速率能否超越人工智能用电需求增长速率。
如果不能在两场“竞赛”中至少取得一胜,人类就不得不在原子天下和比特天下之间作出两难取舍。

(一)人工智能的能耗强度赛道

芯片与做事器设计的优化。
英伟达2024年发布的Blackwell系统可以演习比ChatGPT更大的模型,所用的电力大约是现有最佳处理器的四分之一。
2023年Mohamad Hnayno的研究表明,采取高效率冷却系统有潜力将数据中央的电力需求减少10%,而液冷技能可减少20%。

需求相应的智能分散化。
人工智能数据中央脱碳努力的另一条路线,是将人工智能演习等具有时空灵巧性的事情任务转移至碳强度较低地区。
同时,边缘打算和分布式人工智能处理办法,也能减少对长间隔数据传输的能源花费。

量子打算。
量子打算具有高容量信息存储和高速并行化打算的特色,运算的能耗效率将远超经典的打算模式。
当下量子打算的硬件技能路径还处于多路线试错中,超导、离子阱、光量子等办法各有优缺陷,距实现大规模可容错通用量子打算还有较大间隔。
过去几年,量子打算公司与人工智能研究机构建立了浩瀚互助关系,在成本的推动下,可纠错通用量子打算机的研制韶光表可能会提前。

(二)能源转型的赛道

近中期看,储能技能是关键。
储能是可再生能源跨韶光配置的一种办法,是人工智能数据中央就近消纳新能源的根本举动步伐,发展储能技能的主要性不亚于新能源家当本身。
抽水蓄能技能比较成熟,适用于高海拔山脉和山谷地形地区大规模、集中式的能量储存和电网调峰,但也面临自然选址局限性、能量密度低等不敷,存在规模天花板。
推动氢储能等新型储能技能的多元化开拓,提高储能的能量密度、充放电效率和相应速率,是将新能源潜力开释到人工智能家当上的关键。

中长期看,人工智能在新能源供需预测、电网运行和优化、能源需求管理以及新能源技能研发等领域将发挥主要浸染。

人工智能加速电网智能化。
在发电侧,人工智能通过学习历史气候数据、传感器数据、卫星云图等图像和***数据,提升太阳能和风能设备发电量预测准确度。
在电网侧,人工智能有助于提升输电和配电能力,优化电网设计和方案,帮忙掩护职员保障电网安全稳定运行,如基于无人机拍摄的***识别非常设备。
在用电侧,人工智能可以帮助用户在电池供电、实地太阳能发电和电网供电之间择优进行切换,智能管理分布式可再生能源及干系设备。

人工智能推动可控核聚变技能研发。
目前核能供应了环球约10%的电力供应,但人工智能行业目前关注的不是已成熟的核裂变技能,而是寄望于可控核聚变技能。
可控核聚变的质料来源更丰富,能量密度是核裂变的4倍,且产生的放射性废物更少。
当前,人工智能技能正推动可控核聚变技能研发加速。
例如,2024年普林斯顿团队通过演习神经网络,提前300毫秒预测了核聚变中的等离子不稳定态。

五、展望与建议

作为一项潜在的通用目的技能,人工智能是未来一国竞争力和国际话语权的主要组成部分,紧张国家不仅在人工智能各技能领域布局,也看重地理意义上的布局。
虽然人工智能的研发活动地较为集中,但由于须要保持足够的相应速率,其关键根本举动步伐和运用处景要具备一定的地理附近性。
为了扩展环球业务版图,人工智能企业竞相在环球各地区建立算力中央。
因此,人工智能算力中央在环球都有分布,须要各国的能源、地皮和水等资源供应物质支撑。
据SemiAnalysis报告,截至2023年初,85%的环球自建超大规模数据中央容量属于谷歌、微软、亚马逊、Meta、苹果等五家美国科技企业。

图2 科技企业自建数据中央以电力估算的算力容量 数据来源:SemiAnalysi

人工智能数据中央的布局正在向发展中国家拓展。
人工智能数据中央选址的紧张条件有三方面:稳定的能源供给、适宜的景象和高效的网络连接。
发达国家培植数据中央的机会本钱高,在环境审批和数据保护法律方面更加严格。
如瑞典2023年取消了一项2017年制订的数据中央税收优惠政策,旨在将电力能源留给其他领域;冰岛2024年减少比特币和数据中央家当的能源支出,将多余廉价电力用于农业,以保障本国粮食安全。
相对而言,发展中国家的数字家当及人工智能发展政策更为积极。
例如,2023年由于乌拉圭遭受严重干旱,谷歌在乌拉圭新建人工智能数据中央的操持受到争夺饮用供水的质疑,但终极仍得到批准。
根据IEA2024年发布的电力剖析与预测报告,目前环球有超过8000个数据中央,个中约33%位于美国,16%位于欧洲,超半数分布在亚洲、拉美和非洲等地区。

各国在为人工智能供应电力支持时各具利害势。
美国电价相对较低,均匀工业电价为0.083美元/千瓦时。
但在多年去工业化政策下,美国电网跨地区调配的能力不敷。
欧洲和日本虽然在人工智能上具有技能上风,但其能源本钱较高,天然气占西欧和日本发电构造的35%-45%且入口依赖较高,核电及煤电供应因安全及环保缘故原由低落压力较大。
中东地区电价低,太阳能资源丰富,阿联酋等国在推动100%绿电驱动的低碳数据中央培植,但目前还短缺本土人工智能企业。
中国是新能源上风国家,能源本钱较低,工业用电在环球有价格上风,且相对自给自足,但煤电比重仍有下调空间。

环球人工智能互助需与能源计策互助并轨。
人工智能发展与能源转型是大势所趋,天下各紧张国家应携手开展环球人工智能管理与能源转型互助。
据IEA估计,到2040年前,环球须要新增或整修超过8000万公里的电网线路,以支持风能和太阳能光伏发电的增长。
在这一过程中,各紧张国家应共同建立更加高效的环球电力设备供应链,降落新能源设备的贸易壁垒,探索制订内部化负外部性的环球人工智能用电价格标准,联合利用人工智能技能推动能源领域技能创新。
惟其如此,人工智能发展才能建立在更可持续的能源基座之上,能源转型才能搭上人工智能的翅膀而加快发展。

充分利用能源上风提高我国在环球人工智能领域的竞争力。
我国处于环球人工智能领域中较为靠前的位置,但也面临一些关键技能的制约。
稳定、绿色和灵巧的大规模电力供应是我国在人工智能领域主要的比较上风,要将该上风融入到人工智能发展中。

一是要环绕“算力+能源”开展统筹方案,推动算力网、通信网、电网等多网协同发展,实现智能算力与绿色能源的上风叠加效应。

二是构建人工智能算力“西训(练)东推(理)”的布局,充分化解算力资源与能源供需抵牾,提高对西部光伏、风电等新能源的利用效能。

三是推动人工智能在能源转型创新上的运用,提高电力系统互补互济和智能调节能力,加强源网荷储衔接,提升新能源消纳和存储能力,提升能源系统安全保障能力。

四是支持“一带一起”沿线“电力+算力”家当发展,形成电力交易、电力培植、电力设备贸易等互助模式,推动当地新能源电力举动步伐与算力根本举动步伐配套培植。

(作者卓贤系***发展研究中央发展计策和区域经济部副部长、研究员,肖娅晨系国家电网有限公司大数据中央剖析师,范炘宜系北京大学国家发展研究院博士生。
本文不代表作者所在机构的不雅观点。
本文首发于《财经》杂志2024年第11期。
本文原题为“人工智能与能源转型”)