加州理工华人用AI颠覆数学证实!震撼陶哲轩80%数学步骤自动化_策略_前提
Lean Copilot,让陶哲轩等浩瀚数学家赞不绝口的这个形式化数学工具,又有超强进化了?
就在刚刚,加州理工教授Anima Anandkumar宣告,团队发布了Lean Copilot论文的扩展版本,并且更新了代码库。
论文地址:https://arxiv.org/pdf/2404.12534.pdf
最新实验表明,这个Copilot工具,可以自动化80%以上的数学证明步骤了!
这个记录,比以前的基线aesop还要好2.3倍。
并且,和以前一样,它在MIT容许下是开源的。
而对此做出巨大贡献的,是一位华人小哥宋沛洋,他是UCSB的名誉CS本科生,加州理工学院打算+数学科学(CMS)系的SURF研究员。
网友惊呼:以是,陶哲轩现在的数学研究可以原地加速5倍了?
LLM提出证明策略,人类无缝干预
团队就发布了这个Lean Copilot的工具,希望启动人类和LLM的协作,编写出100%准确的形式化数学证明。
它办理了一个核心技能寻衅:在Lean中运行LLM的推理。
通过这个工具,我们就可以让LLM在Lean中提出证明策略,许可儿类以无缝的办法干预和修正。
之以是开拓这个项目,是由于自动化定理证明在如今仍是一项艰巨的寻衅。
我们都知道,LLM在做数学和推理任务时,时常会犯缺点、产生幻觉,十分不可靠。
因此,到目前为止,数学证明大多是手动推导的,须要仔细验证。
像Lean这的定理证明工具,倒是可以形式化证明过程的每一步,但人类编写起Lean,其实很费力。
在这种情形下,Lean Copilot的出身就显得意义重大。
让陶哲轩多次震荡的神器:数学家还不会用就塌台了
LLM可以作为赞助人类证明定理的工具,这一论点已经被陶哲轩多次证明了。
他前脚刚在博客里预测,26年AI将和搜索、符号数学工具结合,成为数学研究中值得相信的合著者。
紧接着,佐证他不雅观点的研究就如雨后春笋一样平常源源不断地冒出来。
去年6月,加州理工、英伟达、MIT等机构的学者,就构建了一个基于开源LLM的定理证明器LeanDojo。
9月,微软亚洲研究院、北大、北航等机构的研究职员,通过97个回合的「苏格拉底式」严格推理,成功让GPT-4得出了「P≠NP」的结论,破解了这个千禧年难题。
在第97轮对话中,GPT-4得出结论,证明示例在没有穷举法的情形下无法求解,证明了却论为P≠NP
去年10月,陶哲轩在GPT-4、Copilot的帮助下,直接创造了自己论文中的一处隐蔽bug。
在用Lean4形式化第6页论点的过程中创造,他创造表达式
在n=3,k=2时,实际上是发散的。
这个不太随意马虎看出的bug能被及时捉住,多亏了Lean4。缘故原由是,Lean哀求他构建0<n−3,但陶哲轩只假设了n>2。由此,Lean无法基于负的0<n−3得到反证。
这一创造直接让陶哲轩瞳孔震荡。
而在去年年底,陶哲轩直接成功地用AI工具,完成了形式化多项式Freiman-Ruzsa猜想证明过程的事情。
末了,依赖关系图已经完备被绿色所覆盖,Lean编译器也报告说,这个猜想完备遵照标准公理。
在这个过程中,所有最前哨的数学研究者,都在第一韶光感想熏染到了AI对付数学研究颠覆力量的直接冲击。
Lean Coilot,让Lean更好用
而本日,Lean Copilot的这项研究,让Lean直接变得更强大了。
在这篇论文中,团队基于Lean Copilot构建了一些工具,用于建议证明步骤(策略建议)、完成中间证明目标(证明搜索)和利用LLM选择干系条件(条件选择)。
实验结果也充分表明了,跟Lean中现有的基于规则的证明自动化比较,Lean Copilot在赞助人类自动化定理证明上,是有效的。
Lean Copilot供应了一个通用框架,可以通过CTranslate 2在本地,或者在做事器上运行LLM的推理。
通过这个框架,用户就能创建各种自动化证明工具。
Lean是一个在数学家中很受欢迎的证明助手。如下图所示,Lean中的一个证明,是由一系列被称为策略(tactics)的证明步骤组成。
从全体定理开始作为初始目标,策略反复地将当前的目标转化为更大略的子目标,直到所有目标都被办理。
用户在由VSCode驱动的IDE中交互编写策略,在右边的infoview面板中显示目标。
天生策略建议利用Lean Copilot,团队构建出了suggest_tropics,一种用LLM天生策略建议的工具。
而它本身,也是一种策略。
运用时,它将当前目标输入LLM,并且从LLM获取天生的策略候列表。
它会查看每个选项,看它们是否会 1)导致缺点;2)结果没有错,但不能完成证明;3)顺利完成证明。
如果是1),这个策略就会被删除。
只有无缺点的策略,才会显示在右边的视图面板中。
个中,成功完成证明的策略,利用绿色标记(种别3);没有缺点改变证明目标,但未完成证明的策略,利用蓝色标记(种别2)。
把稳!
当所有列出的策略都属于种别2时,这个信息对付用户来说,可能极有代价。
在这种情形下,剩余目标的信息,可以直接帮助用户选择策略,作为下一个中间证明步骤。
看到建议后,用户可以选择是否接管,或利用它们作为灵感来源,制订新策略。
比如,我们在Lean代码中定义了一个定理add_abc,它的初始目标如图3右所示。
当我们输入suggest_tropics时,会在右边看到策略建议。
第一个策略显示为绿色,表示证明已成功完成。
接下来三个建议均为蓝色,这就表明无法直接完成证明,但不会导致缺点。
因而,它们很有可能是有效的中间证明步骤!
同时,剩余子目标也显示了出来。
而Tactic state字段显示No goal,是由于至少有一个策略建议可以被证明。
搜索完全证明
此外,由于人类和机器都不能始终如一地产生精确的策略,因此在这个过程中必须回溯、探索不同的替代方案,这个过程便是证明搜索。
当是上面所说的Suggest_tropics,仅能天生当前步骤的策略,不具备搜索多策略证明的能力。
为此,团队将其与基于规则的证明搜索工具aesop结合起来,构建了一个基于LLM的证明搜索工具。
Aesop会将最佳优先搜索作为Lean的策略履行,并且许可用户配置搜索树的扩展办法。
搜索树是由作为节点的目标组成。
起初,它只有原始目标作为根节点。在每一步中,aesop都会选择最有希望的未扩展节点,通过运用策略对其扩展,将天生的节点添加为子节点。
而当aesop找到一条从根源到可轻松办理的目标的路径,就证明搜索成功了!
因此,aesop的性能关键取决于用户是否配置了有效的规则集。
这就可以看出,aesop缺少灵巧性。因此,Search_proof通过在每一步中由suggest_tropics天生的目标干系策略,来增强aesop的规则集,让它变得更加灵巧。
对付图3中的原始目标,用户只需输入search_prrof,找到可以办理目标的完全证明,就显示在了信息视图中(图5右)。
可以看到,由于创造了成功的证据,以是剩余的Tactic state是No goals。
选择注释好的条件
此外,定理证明中另一项具有寻衅性的主要任务是,找到减少或完成证明的干系条件。
除了源码库和标准库中有大量条件,Lean还有一个大型数学库(Mathlib)。
然而,从所有库中搜索候选条件,极其困难且耗时耗力。
以是许多人都试图,能在Lean,或其他的证明助手中得到赞助,或自动完成这一过程。
在Lean中,最前辈的条件选择方法是,直接在Lean中实现的基于随机森林(random forest)的框架。
然而,条件选择任务非常适宜检索增强型LLM,即在大模型演习期间演习检索矩阵(条件嵌入),以估计证明目标与候选条件之间的干系性。
给定推理时的证明目标,首先将目标编码成一个向量,然后在条件嵌入和目标向量之间实行矩阵向量乘法。
然后,为了选择前k个条件(个中k可以是一个超参数,决定用户想要返回多少个条件),这时只需返回得分最高的k个条件。
而要在Lean中实行推理任务,除了Lean Copilot供应的快速推理外,还须要一个高效的矩阵乘法库和一个C++的numpy矩阵阅读器。
研究职员采取了来自CTranslate2的矩阵乘法函数,和来自Libnpy的C++快速numpy文件阅读器。
他们再次通过FFI机制,将这些数链接到Lean。
因此,条件选择的策略可以非常高效地运行,由于条件嵌入可以预先打算,所有后续操作都可以利用上文先容的库在C++中快速完成。
在得到返回的条件后,研究者进一步用有用的信息对其进行注释。
这里将所有条件所分为两类:可直接在当前环境中利用的条件(范围内条件)和不可直接在当前环境中利用的条件(范围外条件)。
这取决于是否导入了所需的软件包。
如果已经导入了条件所需的包,则可以轻松利用该条件。如下图6显示了带注释的范围内条件。
图7所示是带注释的范围外条件。
下面举个利用「条件选择」的例子,对付图3中的定理add_abc,可以直接在证明中输入select_premises(图8左)。
然后,干系条件的列表,就会涌如今信息视图中(图8右)。
对付这个大略的定理,可以清晰看到所选的条件确实干系,由于它们都与自然数和加法规则有关。
在这种情形下,所选的4个条件都在当前范围内,这意味着它们的模块已经导入。
如上,便是研究职员通过Lean Copilot构建的三个实用的证明自动化工具,用于策略建议、搜索证明和条件选择。
81.2%的证明步骤,全都自动化了
通过Lean Copilot框架,研究职员凭履历提出了假设——在Lean交互式定理证明(ITP)中进行人机协作是有益的。
由于Lean中的定理证明过程,紧张以策略证明为主。
因此,在详细实验中,作者紧张评估了用于「策略建议」,以及「证明搜索」的证明自动化工具。
总而言之,aesop是当前是一种用于证明搜索,最前辈的基于规则的证明自动化工具。
研究职员在两种情形下,验证了基于LLM的搜索证明与aesop比较的有效性:
(1)自主证明定理(LLM独立完成)
(2)帮忙人类进行定理证明(人类与AI协作)
此外,研究者还将搜索证明与策略建议进行了比较,以证明除了单一策略建议之外,搜索证明表示的上风。
研究Lean Copilot如何有效地帮助人类进行ITP的过程,类似于人类在软件编程中利用Copilot的范式。
也便是说,当我们面对一个目标时,首先会调用Copilot,看其是否可以直接办理问题。
如果不能,我们会进一步简化目标,然后再次考试测验Copilot。然后,一贯重复上述过程,直至Copilot成功办理剩余目标。
而研究职员便是通过这样的迭代协作范例中,去查看每个证明自动化工具可以自动化多少人力。
详细结果,如下表1显示。
证明搜索(search_proof)可以自动证明64%的定理(50个中的32个),明显高于aesop和策略建议(suggest_tropics)。
当用于赞助人类时, 证明搜索仅须要均匀1.02个手动输入策略,这也比aesop(3.62)和策略建议(2.72)更好。
末了,对付每个测试的定理,作者打算了三个工具中每一个可以自动化的证明步骤的百分比。
结果创造,证明搜索可以自动完成定理中约81.2%的证明步骤,明显高于策略建议(48.6%)和aesop(35.2%)。
总之,证明搜索的性能比策略建议,要赶过1.67倍,比基于规则的基线aesop高2.31倍。
通过Copilot在Lean中进行本地LLM推理
Lean Copilot中的tactic建议、证明搜索和条件选择,这三个任务在实质上可能看起来不同,但对付用户体验的哀求是相似的。
它们都须要足够快速地天生相应,具有适中的打算需求,同时在Lean中运行。
用户之以是有这些哀求,是由于Lean本身在大多数情形下都能非常快速地供应环境反馈(比如剩余目标,缺点信息,类型信息等)。
这种快速,跟证明定理的实质是同等的——它须要连贯的推理。
如果Lean Copilot须要用户等待很长一段韶光,那么人类和AI之间的协作就很难发挥浸染。
同样,我们也非常希望知足低打算的需求。由于Lean中的定理证明本身不须要GPU,可以在用户本地的条记本电脑上运行。
因此,能够在大多数硬件(包括没有GPU的条记本电脑)上高效运行,对付Lean的用户就非常主要。
由于用户在编写证明时,可能无法访问支持CUDA的GPU。
由于须要知足快速推理和低打算需求,而且所有盛行的高效深度学习框架都是在Python中,团队想到的一个自然的办理方案,便是在Python中托管模型(本地或远程),然后从Lean向模型发出要求。
然而,这种方法会受到进程间通信的开销的影响,并且它须要用户实行额外的设置步骤,并不适宜Lean的传统事情流程。
为了战胜这些问题,Lean Copilot通过外部功能接口(FFI)在Lean中本地运行LLM。
FFI是一种机制,可以用一种措辞编写的程序调用另一种措辞的子程序。
Lean部分用c++实现,可以与c++高效互操作。
程序员可以在Lean中声明一个函数,但在c++中实现函数体。实现会被编译到一个共享库中,并动态链接到Lean。
默认情形下,我们采取的是LeanDojo预演习的repver模型。它基于一个编码器-解码器转换器,BVT5,它将输入字符串映射到输出字符串。
Lean Copilot通过将模型包装成一个对字符串操作的c++函数,使其在Lean中可运行,该函数可以通过FFI在精益中调用。
华人作者立大功
最新论文中的三人团队,也是23年6月开源平台LeanDojo个中的作者。
论文地址:https://arxiv.org/pdf/2306.15626.pdf
Peiyang Song(宋沛洋)宋沛洋是加州大学圣巴巴拉分校创意研究学院(CCS)的打算机科学名誉本科生,导师是Richert Wang和Phill Conrad 。
与此同时,他还是加州理工学院打算与数学科学系(CMS)的SURF研究员,由Anima Anandkumar教授和Kaiyu Yang博士共同辅导。
其余,他还是UC伯克利建筑实验室的研究员,与Tim Sherwood和Dr. Jeremy Lau(谷歌)一起互助。
他的研究兴趣是机器学习(ML),涉及自然措辞处理(NLP)和打算机视觉(CV)等运用领域,以及系统和编程措辞(PL)等根本理论。
宋沛洋最近的研究紧张有两个方向。
一是神经符号推理和人工智能数学(AI4Math),将大模型与交互式定理证明器(ITPs)相结。
另一个是基于时序逻辑的高能效机器学习。
Kaiyu Yang(杨凯峪)杨凯峪是加州理工学院打算+数学科学(CMS)系的博士后研究员,导师是Anima Anandkumar。
他曾在普林斯顿大学得到了博士学位,导师是Jia Deng,还曾与Olga Russakovsky、陈丹琦一起事情。
他的研究重点是神经符号人工智能,旨在使机器学习能够进行符号推理,希望通过两个方向实现:
(1)将机器学习运用于符号推理任务,如形式逻辑或自然措辞中的数学推理和定理证明;
(2)将符号组件引入机器学习模型,使其更具可阐明性、可验证性和数据高效。
目前,他正在研究能够理解和推理数学的人工智能。数学推理是人类智能的一个主要里程碑,它有可能改变科学和工程中的许多主要问题,比如办理偏微分方程和公式验证。
Anima AnandkumarAnima Anandkumar现在是加州理工学院打算和数学科学教授。
她的研究兴趣紧张集中在大规模机器学习、非凸优化和高维统计等领域。
特殊是,她一贯在带头开拓和剖析机器学习的张量算法。
张量分解方法具有极高的并行性和可扩展性,可运用于海量数据。它可以担保收敛到最优解,并对许多概率模型(比如Markov模型)输出同等的估计结果。
更广泛地说,Anandkumar教授一贯在研究加速非凸优化的高效技能。
参考资料:
https://arxiv.org/abs/2404.12534
https://github.com/lean-dojo/LeanCopilot
https://twitter.com/AnimaAnandkumar/status/1782518528098353535
本文系作者个人观点,不代表本站立场,转载请注明出处!