本月 7 日揭橥在《Nature Medicine》上的一篇论文提出了一种深度学习算法 DeepGestalt,可以帮助年夜夫和研究职员通过剖析人们的面部照片来创造罕见遗传病。
在这篇论文中,研究者详细先容了这项赞助诊断方法背后的技能——一个名为 Face2Gene 的智好手机 APP。
该运用依赖深度学习算法和类脑神经网络来区分人类照片中与先天性和神经发育障碍有关的独特面部特色。
利用从照片中推断出的模式,该模型可以定位到可能的诊断结果,并供应可能的选项列表。

登上Nature\u0026ScienceAI「看面相」识别遗传病准确率达91%_综合征_算法 智能写作

研究职员正在提高算法能力,以帮助创造诸如德朗热综合征 (CdLS) 等遗传疾病的身体特色。

年夜夫已经利用这种技能作为赞助手段,只管它给出的诊断并不是决定性的。
但是,研究者表示,这一工具引发了人们对伦理、法律方面的担忧,包括演习数据集中的种族偏见和数据集的商业身分,二者都可能会限定这一诊断工具的利用范围。

FDNA 是马萨诸塞州波士顿的一家数字医疗公司。
在该公司首席技能官 Yaron Gurovich 的带领下,研究者们首先演习人工智能系统来区分德朗热综合征和天使人综合征,这两种疾病患者都有有别于其他疾病的明显面部特色。
他们还教该模型区分对第三种疾病——努南综合征的不同基因形式进行分类。

接下来,研究者们给算法输入了涵盖 216 种不同综合征的 17000 多张确诊病例的图像。
在用新面孔进行测试时,该 APP 的最佳诊断预测准确率达到了 65%。
如果考虑多个预测结果,则 Face2Gene 的 top-10 准确率可以达到约 90%。

缩小可能病症的范围

终极,FDNA 想开拓该技能来帮助其他公司过滤、优先处理和解释 DNA 剖析中创造的未知基因变异。
但是要想演习模型,FDNA 须要数据。

因此目前医疗专家可免费利用 Face2Gene app,个中许多人将该系统作为诊断罕见遗传性疾病的第二选择,Nemours/Alfred I. duPont 儿童医院医学遗传专家、该研究的共同作者 Karen Gripp 说道。
它还可以为对病人症状摸不着头脑的年夜夫供应思路——「类似谷歌搜索」。

Gripp 也是 FDNA 的首席医疗官,她利用该算法帮助诊断一个小女孩的 Wiedemann–Steiner 综合征。
这个小女孩才四岁,由于年事较小,除了掉落大部分乳牙并长出多个恒牙,很多范例的躯体症状尚未显现。

Gripp 读了很多关于患有 Wiedemann–Steiner 综合征的儿童牙齿过早成长的案例报告,这是由一种叫作 KMT2A 的基因变异引起的罕见疾病。
为了支撑该诊断的置信度,Gripp 将这个患者的照片上传到 Face2Gene。
软件上涌现了「Wiedemann–Steiner 综合征」。

接着,Gripp 用靶向 DNA 测试进一步确定了这一诊断结果。
她说,该 AI 方法可以帮助她缩小可能病症的范围,节约了更昂贵的多基因检测(multi-gene panel testing)用度。

DeepGestalt 高等流程和网络架构。
该网络由十个卷积层组成,除了末了一个之外的所有层都是批量归一化和 ReLU。
在每对卷积层之后是池化层(在前四对之后的最大池,和在第五对之后的均匀池)。
然后是具有 dropout(0.5)和 softmax 层的全连接层。

「打败人类」

Gurovich 表示,随着更多医疗专家将病人的照片上传到该 APP,该项目的准确率也得到略微提高。
现在该项目的数据库中大约有 15 万张照片。

在去年八月举办的一个先天性毛病研讨会上,人们对 Face2Gene 和临床年夜夫的准确率进行了一次非正式比拟,结果表明 Face2Gene 优于人类。
南卡罗来纳州格林伍德遗传中央(Greenwood Genetic Center)遗传学家 Charles Schwartz 向参与者发放十个儿童的面部照片(症状「随意马虎识别」),然后让参与者进行诊断。

只在两张照片上有半数以上的临床遗传学家诊断出精确结果。
而 Face2Gene 精确识别了个中 7 张照片里的症状。

「我们输得很惨,Face2Gene 打败了我们。
」美国国家人类基因组研究所(US National Human Genome Research Institute)临床遗传学家 Paul Kruszka 说道。
「我认为儿科年夜夫和遗传学家将会有一个类似的 app,并像利用听诊器一样利用它。

筒仓效应和偏见

但只有演习数据集够好,算法才足够好用,因此这种技能存在风险。
尤其是涉及那种环球患者人数极少的罕见疾病时,公司和研究职员各自为营,将其数据集商业化。
「这会威胁到这项技能的紧张潜在上风。
」带头促进这一领域数据共享的牛津大学打算生物学家 Christoffer Nellåker 说道。

演习数据集(个中大部分为白人)中的种族偏见仍是一大问题。
2017 年的一份儿童智力障碍研究表明,Face2Gene 对唐氏综合征的识别率在比利时白人小孩中为 80%,而在刚果黑人小孩中仅为 37%。
然而,随着演习数据集变得更加多样化,算法对非洲面孔的识别准确率亦随之提升,表明多样化人群的更公正表示是可以实现的。

「我们知道这个问题须要办理,但随着我们技能的发展,偏见会越来越少。
」Gurovich 表示。

论文:Identifying facial phenotypes of genetic disorders using deep learning

https://www.nature.com/articles/s41591-018-0279-0

择要:综合征遗传病影响了 8% 的人口。
很多综合征具有可识别的面部特色,这些特色对付临床遗传学家来说具有很高的信息代价。
最近的研究表明,面部分析技能识别综合征的能力已经达到了专业年夜夫级别。
然而,这些技能只能识别少数疾病表型,因而在临床诊断中发挥的浸染有限,临床诊断中须要识别的综合征有上百种。
本文提出一种面部图像剖析框架 DeepGestalt,该框架利用打算机视觉和深度学习算法量化了数百种综合征的相似性。

在最初的三个实验中,DeepGestalt 的表现超越了临床医师。
个中两个实验用于区分患有目标综合征和其它综合征的患者,剩下的一个用于区分努南综合征的不同基因亚型。
末了一个实验是反应真实临床问题,而这次 DeepGestalt 在 502 张不同图像上识别精确综合征的 top-10 准确率达到了 91%。
该模型是在一个包含 17000 张图像的数据集上演习的,这些图像共呈现了 200 多个综合征,通过社区驱动的表型平台进行策划。
DeepGestalt 为临床遗传学、基因测试、医学研究和精准医疗中的表型评估增加了相称大的潜在代价。